Tuesday, July 5, 2016

线性回归中的Synergy Effect或Interaction Effect

对于如下形式的线性回归:$$Y=\beta_0 + \beta_1X_1 + \beta_2X_2 + \epsilon$$,如果现实情况下$X1$和$X_2$存在着此消彼长的关系,具体例子来说:比如一笔预算在两个变量间分配时,由于两个变量之间的关系并未在以上的线性方程中进行体现,因此增加一个变量形成如下形式:$$Y=\beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_1X_2 + \epsilon$$.

The hierarchical principle states that if we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.

 在引入Synergy Effect的参数时,无论$X_1, X_2$前面系数的P值比较大,也应该予以保留。

No comments:

Post a Comment